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Amaç: Bu çalışmadaki amacımız serebral gliomlardaki iki 
boyutlu (2D) manyetik rezonans görüntüleme (MRG) yapısal 
analizinde kesit seçiminin radyomik özelliklerin yeniden 
üretilebilirliğine etkisini ardışık kesitler kullanarak araştırmak.

Yöntemler: Bu metodolojik çalışmaya halka açık bir veri 
bankasından düşük dereceli gliomu bulunan 25 hastanın 
T2 ağırlıklı MRG görüntüleri ve semi-otomatik segmentasyon 
verileri dahil edildi. Sadece iki ilgili bölge veya segmentasyon 
alanı kullanıldı: (i), en büyük kesitten elde edilen ve (ii), hemen 
komşuluğundaki kesitten elde edilen. Radyomik özellikler açık 
kaynak kodlu PyRadiomics yazılımı kullanılarak elde edildi. 
6 farklı özellik sınıfından 3 farklı görüntü tipi kullanılarak 
toplamda 1116 yapısal özellik elde edildi. Güvenilirlik analizi 
%95 güven aralığı (GA) kullanılarak ve kullanılmadan sınıf içi 
katsayısı (SİK) ile yapıldı. Mükemmel yeniden üretilebilirlik için 
SİK eşik değeri 0,9 idi.

Bulgular: %95 GA kullanılmadan yapılan güvenilirlik 
analizinde, yapısal özelliklerin %28’i mükemmel yeniden 
üretilebilirliğe sahipti. Bunun yanında, %95 GA kullanılarak 
yapılan güvenilirlik analizinde ise, yapısal özelliklerin sadece 
%10’u mükemmel yeniden üretilebilirliğe sahipti. Ardışık MRG 
kesitlerinde ne bir özellik sınıfı (aralık, %95 GA kullanılmadan 
%21,2-%34,4; kullanılarak, %2,1-%18,3) ne de bir görüntü tipi 
(aralık, %95 GA kullanılmadan, %22,3-%41,9; kullanılarak, 
%9,1-%14) önemli düzeyde yeniden üretilebilirliğe sahipti. 

Sonuç: Serebral gliomlardaki 2D T2 ağırlıklı MRG yapısal analizi 
kesit seçimine duyarlıdır. Bu durum dikkate alınmadığında 
radyomik çalışmalarda yeniden üretilebilirlik sorunlarına 
neden olabilir.

Anahtar Kelimeler: Gliom, MRG, yapısal analiz, radyomik, 
güvenilirlik

Introduction: In this study, we aimed to investigate the 
reproducibility of two-dimensional (2D) texture features 
between adjacent magnetic resonance imaging (MRI) slices in 
patients with cerebral gliomas.

Methods: For this retrospective methodological study, T2-
weighted MRI and semi-automatic segmentation data of 25 
patients with lower-grade gliomas were obtained from a public 
database. Only two regions of interests were used in this study: 
(i), the largest slice and (ii) one of the adjacent slices. Using 
PyRadiomics, an open source software to extract radiomic 
features from medical images, a total of 1116 texture features 
from six different feature classes were extracted from original, 
Laplacian of Gaussian-filtered, and wavelet-transformed 
images. Intra-class correlation coefficient (ICC) values with and 
without 95% confidence interval (CI) were used for reliability 
analysis. The ICC threshold for excellent reproducibility was 0.9.

Results: In the reliability analysis without considering the 95% 
CI for the ICC values, 28% of the texture features had excellent 
reproducibility. On the other hand, considering the 95% CI, 
only 10% of the texture features had excellent reproducibility. 
Neither a feature class (range of excellent reproducibility rates 
without 95% CI, 21.2%-34.4%; with 95% CI, 2.1%-18.3%) nor an 
image type (range of excellent reproducibility rates without 
95% CI, 22.3%-41.9%; with 95% CI, 9.1%-14%) had considerable 
reliability in two adjacent MRI slices.

Conclusion: 2D MRI texture analysis of gliomas using T2-
weighted sequence is substantially sensitive to slice selection 
bias, which may lead to non-reproducible results in radiomic 
works.
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Introduction
The most common primary malignant cerebral tumors in adults are 
gliomas (1). Considering certain prognostic and therapeutic implications, 
gliomas can be divided into low-grade [World Health Organization 
(WHO)], grade I and grade II) and high-grade (WHO grade III and grade 
IV) based on histopathological and clinical criteria (2). Furthermore, 
WHO grade II and grade III diffuse gliomas are grouped as lower-grade 
gliomas, forming a heterogeneous group of tumors that have a wide 
range of malignancy characteristics (3). High-grade gliomas have very 
poor survival, while low-grade gliomas are associated with a longer life 
expectancy. Correct histopathological and genomic diagnosis of gliomas 
is crucial for appropriate treatment of all gliomas. Although biopsy is the 
gold standard for this purpose, this has been widely challenged by non-
invasive conventional and advanced imaging techniques (4). 

Texture analysis has been used for quantifying distribution and patterns 
of pixels or voxels in traditional or advanced medical images (5,6). In 
contrast to conventional qualitative and subjective clinical assessment, 
which might lead to significant variability depending on the experience 
of radiologists, image texture analysis offers an objective and more 
accurate non-invasive diagnosis that may influence patient management 
by more personalized management. Recently, texture analysis has 
been used in predicting histopathological tumor types, prognostic 
clinicopathological features, genomic characteristics and survival (7). 
However, the major problem of this field is the reproducibility of texture 
feature parameters, resulting in a challenge for creating powerful and 
stable predictive models to be used in clinical practice (8,9). 

Although three-dimensional segmentation is the most representative 
for tumor texture, several studies have been published using a single 
image slice in the texture analysis of gliomas (10-13). However, this 
technique is prone to slice selection bias. To the best of our knowledge, 
the reproducibility of texture features between image slices has not 
been studied so far. In this study, we hypothesized that texture feature 
parameters obtained from different and even adjacent slices might not 
be correlated with each other and have a dependency to the selected 
slice. Therefore, in this study, we investigated the reproducibility of two-
dimensional (2D) texture features between adjacent magnetic resonance 
imaging (MRI) slices in patients with lower-grade gliomas.

Methods

Database Characteristics

No ethical approval was obtained for this retrospective methodological 
study because all patients included in this study were publicly and freely 
available for scientific purposes in the cancer imaging archive (TCIA) (14). 
The imaging and segmentation data of the patients used in this study 
were obtained from the collection named “LGG-1p19qDeletion” in TCIA 
(14-16). 

One hundred and fifty-nine patients in the collection were reviewed 
for identifying patients with a uniform image acquisition protocol and 
no signs of previous surgery or biopsy, which would influence texture 
feature parameters. Following the initial evaluation of the collection, 
a randomly selected subset of 25 patients with MRI and tumor 
segmentation data was included in this reproducibility study.

MRI Acquisition Parameters

Only T2-weighted spin-echo MRI images were included in the study. The 
images were obtained using a 1.5 Tesla MRI unit. Acquisition parameters 
were uniform, except for time to echo and repetition time. The 
representative acquisition parameters were as follows: time to echo, 98; 
repetition time, 4000; slice thickness, 3 mm; pixel spacing, 0.937x0.937 
mm2; echo train length, 16; and acquisition matrix, 256x256. 

Texture Feature Extraction 

Before feature extraction, the low-frequency signals that would corrupt 
MRI images were corrected in all images using N4 bias field correction 
algorithm (17). Then, gray-level intensity values were normalized and 
discretized (18,19). Normalization procedure was performed using the 
±3 sigma technique based on the following mathematical formula:

where f (x)  is normalized gray-level intensity, x is original gray-level 
intensity, μ (x)  is mean gray-level intensity value, σ (x)  is the standard 
deviation of gray-level intensity, and s is the scaling factor, which was 
100 in this study.

The discretization was based on the following mathematical formula: 

where, X
b,i 

is gray-level intensity following discretization; X
gl,i 

is gray-level 
intensity prior to discretization; W is the bin-width value, which was five 
in this study.

The segmentation datasets were obtained from TCIA (14-16), which 
was used in the study of Akkus et al. (15). The segmentations had been 
done with semi-automatic fashion and based on normal brain atlas, the 
posterior probability of the voxels, and geodesic active contour (20-22). 
Original segmentation data included three image slices. Nonetheless, we 
only used the largest slice and one of the adjacent slices in the radiomic 
analysis. Segmentation style and usage in this study are presented in 
Figure 1. 

Figure 1. Segmentation style in a 47-year-old male with a grade III diffuse 
glioma. (a) T2-weighted axial slice shows the right-sided frontal tumor with 
extension to the left side. (b) Reconstructed coronal T2-weighted MRI image 
presents the segmentation data decomposed to three consecutive slices. 
Two axial slices including middle (green-colored segmentation) and upper 
(red-colored segmentation) or lower (blue-colored segmentation) ones were 
included in this study. (c) Axial T2-weighted image shows one of the two 
selected segmentations

MRI: magnetic resonance imaging



Burak Koçak. Reliability of 2D MRI Texture Analysis

415

Texture features were extracted from the two adjacent MRI slices using 

PyRadiomics software (PyRadiomics version 2.0.1; Numpy version 1.13.1; 

SimpleITK version 1.1.0.dev370; PyWavelet version 0.5.2; Python version 

2.7.13) (23). Using the original image, the extracted texture feature 

groups were as follows: (i), 18 first-order features; (ii), 14 gray-level 

dependence matrix (GLDM) features; (iii), 24 gray-level co-occurrence 

matrix (GLCM) features; (iv), 16 gray-level run length matrix (GLRLM) 

features; (v), 16 gray-level size zone matrix (GLSZM) features; and (vi), 5 

neighboring gray-tone difference matrix (NGTDM) features. In addition 

to the original image, we also used Laplacian of Gaussian (LoG)-filtered 

and wavelet-transformed images in extracting texture features. The LoG 

filter was used for image filtration with values of 2 mm, 4 mm, and 6 

mm; where, 2 mm, 4 mm, and 6 mm represent fine, medium, and coarse 

patterns, respectively. Wavelet-based texture features were created using 

eight different frequency band combinations. The total number of the 

features extracted was 1116 [93 from the original image; 279 (93x3) from 

LoG-filtered images; and 744 (93x8) from wavelet-transformed images] 

per lesion. Detailed definitions and mathematical formulas for these 

features have been described in the website of PyRadiomics in detail, 

https://pyradiomics.readthedocs.io/en/latest/.

Statistical Analysis

The statistical analysis was performed using SPSS version 20 (SPSS 
Inc.). The degree of correlation and agreement of quantitative texture 

features between MRI slices were assessed using intra-class correlation 

coefficient (ICC) (24). For the ICC analysis, we used a two-way model, 

single-rating, and absolute agreement. The strength of reproducibility 

was defined as follows: (i), ICC<0.9, not excellent reproducibility; and (ii), 

ICC≥0.9, excellent reproducibility (24). The reproducibility was assessed 

using the ICC values with and without considering 95% confidence 

interval (CI).

Results

Overall Reproducibility

In the analysis performed without considering 95% CI for the ICC values, 

approximately one-fourth of the texture features were excellently 

reproducible (Figure 2a). On the other hand, considering the 95% CI, 

only one-tenth of the texture features were excellently reproducible 

(Figure 2b).

Reproducibility Based on Image Types

In the analysis without considering the 95% CI for the ICC values, 
approximately less than half of the texture features extracted from the 
original and LoG-filtered image types were excellently reproducible. 
Nonetheless, for the wavelet-transformed images, approximately one-
fourth of the features were excellently reproducible (Figure 3a).

In the analysis with considering the 95% CI for the ICC values, 
approximately only one-tenth of the texture features extracted from 
the original, LoG-filtered, and wavelet-transformed image types were 
excellently reproducible (Figure 3b).

Reproducibility Based on Feature Classes

In the analysis without considering the 95% CI for the ICC values, 
the feature classes with the highest and lowest rates for excellent 
reproducibility were GLRLM and GLCM, respectively. For the first-order 
and GLCM feature classes, approximately one-fourth of the texture 
features were excellently reproducible. Meanwhile, for the other feature 
classes (GLDM, GLRLM, GLSZM, NGTDM), approximately one-third of the 
features were excellently reproducible (Figure 4a).

In the analysis with considering the 95% CI for the ICC values, the feature 
classes with the highest and lowest rates for excellent reproducibility 
were NGTDM and GLCM, respectively. For the first-order and GLCM 
features, only less than one-tenth of the texture features were excellently 
reproducible. Meanwhile, for the other groups (GLDM, GLRLM, GLSZM, 
NGTDM), approximately less than one-fifth of the texture features were 
excellently reproducible (Figure 4b).

Figure 2. Pie charts show the overall reproducibility rates of 2D texture 
features between adjacent MRI slices without (a) and with (b) considering 
95% confidence interval

MRI: magnetic resonance imaging

Figure 3. Bar charts present the reproducibility rates of 2D texture features 
between adjacent MRI slices based on image types without (a) and with (b) 
considering 95% confidence interval

MRI: magnetic resonance imaging, LoG: laplacian of gaussian



İstanbul Med J 2019; 20(5): 413-7

416

Discussion

In this study, we investigated the reproducibility of 2D texture-based 

radiomic feature parameter values between two adjacent conventional 

T2-weighted MRI slices in lower-grade (WHO grade II and III) glioma 

patients. The vast majority of high-dimensional texture features were 

not excellently correlated between adjacent T2-weighted MRI slices. 

Neither a feature class nor an image type had considerable reliability in 

two adjacent MRI slices. 

To obtain reliable values in a quantitative method, the parameter values 

obtained must be resistant to various factors such as segmentation 

variability, acquisition differences or use of different scanners from 

different vendors. Although much work has been done using 2D MRI 

texture analysis in cerebral gliomas (10-13), there is a scarcity of papers 

regarding the reliability of the technique. Only few papers draw our 

attention to the in vivo stability of the texture feature parameters. 

The most significant of those is a methodological study dealing with 

volume bias, slice bias, and region of interest bias in glioblastomas 

(9). Although it has been conducted with a very limited number of 

features, in their seminal work, the authors suggested that increasing 

fractal tumor volume and even a minimal change of a region of interest 

area significantly influence the texture feature parameters, providing 

evidence regarding susceptible nature of the texture analysis. However, 

the stability of parameters across different slices has not been studied 

so far. Therefore, a direct comparison of this study with others is not 

possible. 

We think that our study has very significant pre-clinical and clinical 
implications. In general, a texture-based high-dimensional radiomic 
workflow includes a few crucial steps as follows: (i), preprocessing of the 
images; (ii), segmentation of the tumors or lesions; (iii), radiomic feature 
extraction; (iv), dimension reduction to avoid redundant features, which 
is optional; and (v), statistical model development using conventional or 
advanced methods (25). The segmentation step is known to be the most 
critical and challenging one in radiomic works (6). Therefore, our focus 
in this work was on the segmentation step with a different perspective, 
that is, slice selection bias. The most important implication of our work 
was that 2D MRI texture analysis would lead to non-reproducible feature 
parameter values due to the high susceptibility of the texture analysis 
to the slice of interest or slice selection bias. Therefore, the 2D MRI 
texture analysis using a single slice must be used cautiously in radiomic 
workflows. If this technique is used in gliomas, a reliability analysis 
regarding the slice selection bias should be included in the radiomic 
workflow to exclude the features with poor reproducibility. 

A few limitations to this methodological study need to be acknowledged. 
First, the nature of the study was retrospective, which was 
disadvantageous due to dependency on limited data. Second, although 
the image acquisition protocol is fairly uniform, we had to perform a 
few preprocessing steps to minimize small differences like bias field, the 
number of gray levels, and relative gray-level intensity range (18,19). It 
is worth to emphasize that the texture analysis has a dependency on 
these preprocessing steps to obtain comparable parameters (18,19). For 
this reason, all of the MRI images in our study underwent N4 bias field 
correction, gray-level normalization, and gray-level discretization (17-19). 
We did not consider pixel rescaling because it was homogeneous in all 
patients. Third, we included only T2-weighted MRI images, because they 
are widely used in radiomic works (26,27). This study can be expanded 
using other sequences in future studies. Fourth, we only included lower-
grade tumors (WHO grade II and III) to represent gliomas. Nonetheless, 
whether our findings might be extrapolated to other gliomas should be 
further studied. Fifth, a Bland-Altman analysis could have been included 
as a statistical method to reveal the degree of agreement between the 
slices. Instead, we used the ICC in this study, which can serve as a single 
strong metric not only for the degree of correlation but also for the 
agreement between quantitative measurements (24). 

Conclusion
2D MRI texture analysis of gliomas was substantially susceptible to 
selected slices, which may lead to non-reproducible results in radiomic 
works. The vast majority of high-dimensional texture features were not 

excellently correlated between adjacent T2-weighted MRI slices. Neither 

a feature class nor an image type had considerable reliability in two 

adjacent MRI slices. Therefore, a reliability analysis with considering 

different slices must be incorporated into every scientific research using 

this technique. Otherwise, the unstable feature parameters might cause 

non-reproducible outcomes in terms of selected texture features and 

statistical predictive models.

Ethics Committee Approval: Not required due to use of public data.

Informed Consent: Not required due to use of public data.

Figure 4. Bar charts present the reproducibility rates of 2D texture features 
between adjacent MRI slices based on feature classes without (a) and with 
(b) considering 95% confidence interval. 

GLCM: gray-level co-occurrence matrix features, GLDM: gray-level dependence matrix 
features, GLRLM: gray-level run length matrix features, GLSZM: gray-level size zone 
matrix features, NGTDM: neighboring gray-tone difference matrix features
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