Introduction

The vertebrobasilar system (VBS) is responsible for causing 25% of ischemic strokes (1, 2). Approximately one-fifth of the posterior system strokes are caused due to the stenosis developing at the exit site of the extracranial vertebral artery (VA) from the subclavian artery (3). VA orifice stenoses are among the correctable causes of posterior system strokes that can be treated using developed imaging and treatment modalities.

Case Report

A 51-year-old male patient visited our clinic with a complaint of speech impairment and weakness on the left side. He had undergone a surgery for aortic coarctation 13 years ago, and 5 years ago, he had a transient ischemic attack along with difficulty in speaking. During his neurological examination, he was conscious, cooperative, and oriented. Mild dysarthria and left hemiparesis were seen (4/5, 4/5). He smoked at least one cigarette packet per day for 30 years. Vascularization was performed only by the narrowed right vertebral artery on cranial and cervical magnetic resonance angiography. He had a mild increase in his left hemiparesis during his stay in the hospital (2/5, 4/5). A stent had been inserted into his right vertebral artery during digital subtraction angiography. In his last neurological examination, he was conscious, cooperative, and oriented.

A 0.14 guidewire was passed through the guiding catheter, and a 6 x 12 mm balloon expandable stent was brought to the place of stenosis through the guidewire and opened. The procedure was terminated after the stent lumen was monitored open in the control images (Figure 3). Dysarthria and left hemiparesis (3/5, 5/5) were detected on the final neurological examination of the patient. Prasugrel 10 mg/day and ASA 300 mg/day were started as medical treatment due to clopidogrel resistance (92 U, sensitivity 24 U), and then the patient was discharged. At the first- and fifth-month
follow-ups of the patient, left frust hemiparesis (+4/5,-5/5) was found in the motor examination. MRS was 2, and the Barthel index was 90.

Discussion

Vertebral artery stenosis is one of the most important causes of posterior system ischemic symptoms. Medical, surgical, and endovascular methods are used in the treatment of VA stenoses (4, 5).

Endovascular treatment should be considered as a first-line option for patients with posterior system strokes that develop despite appropriate medical treatment or for patients who have asymptomatic bilateral carotid occlusion and in whom collateral circulation is provided only through VA (6, 7).

The extent of the ischemic area that can develop after cerebral artery occlusion depends on the adequate degree of cerebral collateral circulation that can compensate for decreased blood flow. Cerebral primer collateral pathways are intracranial anastomoses (Willis polygon, leptomeningeal, parenchymal anastomoses) (8, 9). Of the collateral systems, the most important is the Willis polygon that provides an even and balanced distribution of intracranial blood flow, which is critical for carotid artery and VA occlusion (10).

In long or chronic stenotic processes, cerebral circulation assumes the function (11, 12). In our case, despite the presence of three vessel occlusions, cerebral blood flow was similarly provided through only VA that was narrow but open and through Willis polygonal anastomoses. Such a situation as in our case has been extremely rarely described in the literature.

Vertebral artery orifice stenosis is one of the correctable causes of posterior system strokes and is now being diagnosed more frequently using modern imaging modalities such as computerized tomography (CT), MR angiography, and DSA.

The elimination of VA orifice stenoses by balloon angioplasty or stenting is a successful treatment method under appropriate anticoagulant–antithrombotic therapy. VA angioplasty was first performed in 1980 by Sundt et al. Numerous clinical studies conducted since then have indicated the importance of angioplasty and stenting in the treatment of vertebrobasilar atherosclerotic disease (13-17). Technical success depends on the development of materials used in endovascular treatment, the degree of stenosis, the vascular tortuosity, and the experience of the neuroradiologist who performs the procedure. The technical success rate was found to be 100% in primary stenting studies of Kızılkılıç et al on 14 cases with severe VA orifice lesions (18). In the treatment of VA orifice stenoses, precise positioning is of great importance since a portion of the stent will have to extend to the subclavian artery. Previously, stents cut from a tube were used to prevent breakage in the orifice lesions due to the angulation of VA with subclavian artery, while balloon expandable stents are used today. Drug-releasing stents may also reduce restenosis in this region where restenosis is more prominent (5, 14, 19). VA balloon angioplasty and anticoagulant and antithrombotic treatment protocols as a medical therapy after stenting are the standard applications indicated in the literature (20, 21).

Conclusion

Vertebral artery orifice stenosis is one of the correctable causes of VBS strokes. Today, it is diagnosed more frequently using modern imaging methods. Balloon angioplasty and/or endovascular treat-
ment applied with stents due to the accompanying cerebral vascular pathologies are effective methods with low morbidity and mortality.

Informed Consent: Written informed consent was not received due to the retrospective nature of this study.

Peer-review: Externally peer-reviewed.


Conflict of Interest: No conflict of interest was declared by the authors.

Financial Disclosure: The authors declared that this study has received no financial support.

References


